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ABSTRACT

We consider the flow-level quality of service (QoS) seen by a
dynamic load of rate adaptive sessions sharing a bottleneck
link based on fair share bandwidth allocation. This is of
interest both in considering wired networks supporting rate
adaptive multimedia sessions and wireless networks support-
ing voice with rate adaptation to realize graceful degrada-
tion during congested periods. Two QoS metrics are consid-
ered: the time-average instantaneous utility of the allocated
bandwidth, and the time-average of transition penalties as-
sociated with the changes in allocation seen by a flow. We
present a simple model for rate adaptation, where (hetero-
geneous) flows can vary their rates within (different) ranges,
and present closed-form results for these perceived flow-level
QoS metrics. We then prove asymptotic results for large ca-
pacity systems exhibiting the salient features of rate adap-
tation in a dynamic network. Finally we provide a concrete
example, showing how the QoS seen by sessions with dif-
ferent degrees of adaptivity would vary under a natural fair
bandwidth allocation policy.

1. INTRODUCTION

Multimedia streams are rate adaptive in that the corre-
sponding data may be encoded at a variety of resolutions,
and the appropriate resolution for a streaming client may
vary with time, depending on the current level of network
congestion. That is, clients may dynamically adapt their
subscription level among a set of stream encodings offered
by a server in response to network congestion or lack thereof.
In particular, streaming clients may wish to increase their
subscription level if extra capacity becomes available along
their route, or may wish to decrease their subscription level
at the onset of congestion. Similarly for some wireless sys-
tems it is of interest to consider supporting a higher rate en-
coding for voice streams, when the system is not congested,
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but then when congestion arises to adapt to lower rate en-
codings in order to enable a graceful degradation and permit
a wireless system to effectively support large variations in
the offered loads.

Rate adaptive streams have characteristics akin to both
elastic and inelastic traffic [37]. They are like inelastic traffic
in that the streams have a minimum acceptable rate for sat-
isfactory performance, and subject to which, their sojourn
in a system might be assumed independent of their actual
resource allocation. They are like elastic traffic in that the
bandwidth per stream may be adjusted dynamically in re-
sponse to changes in the number of streams multiplexed on
the link.

There are several advantages to rate adaptation for multi-
media streams. One advantage is that the number of streams
that can share a link simultaneously is increased above the
maximum number without adaptation; this is due to the fact
that adaptation reduces the rate given to active streams in
order to accommodate newly arriving streams, whereas a
link multiplexing inelastic traffic would be forced to block
these requests. Another benefit is that, like elastic traf-
fic, the streams may increase or decrease their bandwidth
allocation in response to departures and arrivals, thereby
keeping the aggregate bandwidth consumption on a link at
or near the link capacity resulting in enhanced quality of
service (QoS) to flows.

These advantages come at a cost: employing adaptation
means streams endure a time-varying bandwidth allocation.
This time varying allocation is certainly less satisfying from
the customer’s perspective than receiving the stream’s high-
est rate/QoS encoding for the duration of the stream. Thus
we seek to measure the quality of service (QoS) cost of adap-
tation, i.e., the extent to which a given time-varying band-
width allocation detracts from the user’s perceived perfor-
mance. Quantitatively measuring QoS is a thorny issue, e.g.,
see [41], which establishes that most proposed QoS metrics
do not adequately correlate with subjective user testing.

In this paper we will use two performance metrics that
we feel adequately cover a wide range of QoS issues: the
time-average utility and the time-average transition cost.

e The time-average utility metric assumes that the in-
stantaneous utility of a bandwidth allocation x can be
captured through a concave increasing utility function
g(z); the time average utility is then éfod g(z(t))dt
where z(t) denotes the bandwidth allocated to a ses-
sion at time ¢ and d denotes its duration.



e The time-average transition penalty metric assumes
that a penalty in QoS resulting from a change in band-
width allocation from x to 2’ which is captured by a
function h(z,z’); in this paper we will for example
consider h(z,z’) = |z — 2’| where large changes are
worse that small changes. The time average transi-
tion penalty is then given by % fod h(z(t™),x(t)) M (dt),
where M(+) is the point measure for the times at which
changes in bandwidth allocations occur.

These metrics are “gross” in that they ignore many of the
subtleties involved in the psycho-visual perception of image
quality. Nevertheless, all other things being equal, higher
video quality generally implies a higher associated average
rate for the stream and vice versa. Similarly, given two
clients receiving the same stream with the same average rate,
the stream with fewer resolution changes would generally be
thought to have a superior quality. The work in [10] offers
a more detailed investigation of this phenomenon.

Our stream model incorporates a minimum rate for each
stream to perform at a minimally acceptable visual quality.
Having satisfied the minimum rate for each active stream,
the remaining link bandwidth, if any, may be distributed
among the competing streams to improve their QoS. There
are a myriad of policies that may be employed to guide this
allocation, and it is natural to consider “optimal” policies.
For simplicity and tractability in this work we restrict our
attention to “fair share” policies where the bandwidth is
divided equitably. Our other work [42, 43, 44, 45, 46] has
studied adaptation policies that maximize the QoS for a
more restrictive class of metrics than that presented here.

The primary contribution of this paper is a careful anal-
ysis of a simple model for a bottleneck link subject to a dy-
namic load of rate adaptive sessions. We derive closed-form
expressions for the above mentioned flow-level QoS metrics
as a function of the key fundamental parameters, e.g., the
link capacity, the stream characteristics, the arrival rate,
etc., assuming a fair share bandwidth adaptation policy. By
considering a large capacity regime we obtain asymptotic
results for the perceived QoS which captures the salient fea-
tures of rate adaptation in a dynamic system. Our analysis
yields highly intuitive expressions for QoS which combined
with a numerical example provide some interesting insights
on the QoS when (possibly heterogeneous) rate adaptive ses-
sions are carried, and provides some insights on convergence
of the performance of finite capacity systems towards our
asymptotic results.

1.1 Related work

McCanne’s seminal receiver-driven layered multicast pro-
tocol (RLM) [28] introduced the idea of streams dynamically
adapting their subscription levels in response to changing
levels of available bandwidth (congestion). Several authors
have analyzed the performance of dynamic rate adaptive sys-
tems, e.g., [1, 2, 5, 6, 17, 32, 34, 40] and our own work [42,
43, 44, 45, 46]. Most of these papers study systems where
streams are competing for dynamically changing available
resources and seek to characterize the system performance.
Our own work has focused on finding optimal resource allo-
cation policies that maximize customer perceived QoS. Rate
distortion theory has historically provided the key insights
on the tradeoff between rate and distortion, where distor-
tion can be viewed as a proxy for QoS, see e.g., [3, 4, 16, 30,
31, 35, 39].

Capacity allocation for utility maximization has been stud-
ied extensively for the static case, i.e., when the set of users
in the network is fixed, beginning with the seminal work
of Kelly and his collaborators [19, 20, 21, 22, 23]. Other
significant contributions include [8, 24, 25, 26, 27, 29, 38]
but it should be emphasized that almost all of this work
is restricted to resource allocation for elastic traffic. More
significantly, the bulk of the above work focuses on system
level performance while our effort here is aimed at charac-
terizing the performance seen by a given stream, and how
that stream’s characteristics impact the service quality it
receives in a dynamic regime.

The rest of this paper is organized as follows. Section
2 introduces the mathematical model, including the stream
model, the admission policy, the fair share adaptation pol-
icy, and the formal statement of the QoS metrics. Section
3 gives the expressions for the QoS metrics for finite ca-
pacity links. Section 4 gives the corresponding many small
streams asymptotic results. Section 5 presents some numer-
ical results comparing the finite and asymptotic results and
the paper concludes in 6. Finally, we mention that all proofs
are relegated to the Appendix.

2. THE MODEL

Random variables are denoted by capital letters, e.g., X,
scalars are lowercase letters, e.g., x. We will consider two
stream models: i) homogeneous traffic where all streams
have the same minimum rate requirement, and i) hetero-
geneous traffic where streams have individual rate require-
ments. The link state is the set of minimum rate require-
ments for all active streams. For the homogeneous case the
state is represented by the number of active streams, usu-
ally denoted by n (when known) or N (when unknown).
For the heterogeneous case we assume the minimum rates
are drawn from some continuous distribution so that no two
active streams have the same exact minimum rate require-
ment. We can then denote the link state by a set, denoted by
X when the state is treated as a collection of random vari-
ables, and denoted by x when the state is assumed known.
Due to arrivals and departures the link state set has a time-
varying number of elements.

Let n(x) denote the number of components of the vector
x. Similarly, define a(x) = &1 + -+ + @,(x) as the sum of
the components of x. In the context of link state, a(x) cor-
responds to the aggregate minimum bandwidth requirement
of the streams on the link.

2.1 Rate adaptive streams

Streaming media usually demonstrates burstiness across
multiple time scales, see e.g., [9, 15], the burstiness due to
both the inherent time-varying bit rate required to encode
the media information as well as artifacts of the encoding
process. For tractability we employ a much simpler CBR
model: streams are modeled by a pair of positive real-valued
random variables (X, D), where X ~ Fx is the minimum
bandwidth requested by the stream for satisfactory playback
quality and the stream durations D are exponentially dis-
tributed with mean E[D] = £. The CBR minimum stream
rate X can be thought of as the effective bandwidth asso-
ciated with multiplexing the stream on a link [7, 18]. The
distribution F'x captures the relative frequency of different
“size” media streams on a link, e.g., streaming radio, VoIP



traffic, streaming video, etc. Let S = (Smin, Smaxz) denote
the support set of X.

We assume all streams have a common adaptivity o €
(0,1] defined as the ratio of the minimum and maximum
bandwidth. In particular, the maximum bandwidth required
by a stream with minimum bandwidth requirement X is %
These minimum and maximum rates can be thought of ei-
ther as bounds set by the content provider (making avail-
able a range of media encodings at rates between X and
%) or inherent to the media content (rates corresponding
to effective minimum and maximum quality levels). Note
that small « means the stream is highly “compressible” or
elastic, while @ near one means the stream is basically in-
elastic. A natural extension of our model would be to allow
the adaptivity parameter « to vary across streams according
to a specified distribution. We have elected not to pursue
this generalization in the interest of keeping our model, and
thus our results, as simple as possible. Moreover, it is is
natural to model compression algorithms as “scale invari-
ant”, meaning that the algorithm is capable of compressing
a small stream by the same factor as a large stream. Under
this assumption the fixed a < 1 represents the compres-
sion factor of the algorithm, and there is a tacit assumption
that all media employs the same compression algorithm. We
recognize this assumption ignores many of the second-order
effects on media compression, but our aim is to focus on
tractable models for client performance instead of accurate
models for compression algorithms.

The random variables X and D are assumed indepen-
dent and we denote their means by E[X] = o and E[D] =

i. We denote expectation taken with respect to (X, D)

as E°[f(X,D)] = Jsxpt f(x,d)dFx (x)dFp(d) for bounded
measurable functions f of the stream state.

We consider the case where content providers dynamically
adapt the encoding of the media stream to raise or lower
quality in response to network congestion (or lack thereof).
For example, streams might increase their subscription level
(choose a higher resolution encoding) during periods of low
congestion, or decrease their subscription level to mitigate
loss during periods of high congestion. These decisions are
abstracted into our notion of adaptation policy, described
in the sequel. Let A, denote the set of possible media en-
codings for a given media object with minimum bandwidth
requirement x € S made available by the content provider.
We make the following assumption about media encoding
availability.

ASSUMPTION 1. Source adaptation. The source is able
to (dynamically and instantaneously) adjust the encoding of
the stream to match any rate, between the minimum and
mazimum rate, i.e., Ay = [z, Z].

2.2 Admission policies

We consider a single link of capacity c. Single link models
are often adequate models for network scenarios where back-
bone bandwidth is plentiful and streams are constrained at
either the source or destination. Streams arrive requesting
service forming a Poisson process with rate A. Let p = % SO
that p is the offered load in terms of number of streams. We
assume a full-sharing admission policy, meaning streams are
always admitted if there are resources available to do so. In
particular, suppose the state of the link is x = (z1,...,2n)
where the z;’s are the minimum bandwidth requirements of

the n active streams. Define y = a(x) as the aggregate min-
imum load; an arriving stream with minimum bandwidth x
is admitted provided y + x < ¢, and is blocked otherwise.

The system dynamics specified here are those of a stochas-
tic knapsack with continuous sizes, see [33] §2.8. In partic-
ular, let X = |, 8" C RY denote the link state space;
recall the link state is the vector of minimum bandwidth re-
quirements for the active streams. It follows that the X val-
ued random process {X(¢)} is a (homogeneous, stationary,
ergodic) Markov process with transition kernel @ specified
as

Qx,xU{z})= MN(a(x)+2<¢), z€S

Qx,x\ {z:}) = 14,
Q(x,B) = 0, else,

for all Borel B C X. This Markov process is a pure jump
process with bounded rates, whose sample paths are in the
space D, the set of right-continuous functions with left-
limits. Thus, given the occurrence of a state transition at
time ¢ (arrival or departure), X(¢7) is the state of the sys-
tem immediately prior to the transition, and X(t) is the
state immediately following the transition.

Let M be the random point process consisting of the
points ..., T_1,70,T1,... where the T;’s correspond to the
points where X(t) # X(¢t7). We can equivalently view M
as a random measure induced by {X(¢)} defined as M(A) =
>, (T € A) for all Borel sets A C R. Intuitively, M (A) is
the number of transition times of {X(¢)} occurring in each
Borel set A.

We denote the invariant distribution of {X(¢)} as p =
{p(B)} for all Borel B C X. We will have cause to consider
the invariant distribution conditioned on a particular stream
being admitted in the system. In particular, define X, C X
as the set of link states containing the stream state x, i.e.,
Xe = {x € X | 2 € x}. The invariant distribution on
X: is denoted qr = {¢=(B)}, for all Borel B C X,. It is
easily shown that the system dynamics are time-reversible
so the distribution q, is found from that of p by a truncation
argument, i.e.,

p(B)

4(B) = p(Xz)

We define expectation with respect to these distributions as
follows. Let f : X — R be a bounded measurable function
of the link state. Then EP[f(X)] denotes expectation of
f(-) taken with respect to distribution p, and E%[f(X)],
denotes expectation of f(-) assuming a stream with state
x € S has been admitted to the link, i.e., conditioned on
z € X. Finally, let P(z € X) = p(X,) denote the probability
the system contains at least one stream with rate x when
X ~ p.

2.3 Adaptation policies

Having specified the stream admission process it remains
to discuss how the bandwidth c is allocated among the ad-
mitted streams. Let Y = a(X) denote the (random) aggre-
gate minimum load when the link is in steady state, and let
{Y (t)} denote the corresponding (homogeneous, stationary,
ergodic) stochastic process. The system dynamics ensure
Y (t) < ca.s. for all t. An adaptation policy m defines how
to allocate the residual bandwidth ¢ — Y (t) at each time ¢t
among the active streams. Let N = n(X) denote the (ran-
dom) number of active streams when the link is in steady

i=1,...,n(x)

, BC X, z€S. (1)



state, and let {N(t)} denote the corresponding stochastic
process.

Suppose the state vector is x = (x1,...,2n) at some time
t, i.e., there are n active streams with minimum rates x;.
An adaptation policy  is represented by a function s™(x) =
(8o, (%), ..., 55, (x)) that assigns a subscription level to each
active stream. In particular, s7(x) is the allocation under
policy 7 to a stream with state (minimum subscription level
z) when the link state is x. We define II as the set of policies
that are feasible and work-conserving.

DEeFINITION 1. Feasibility Feasible adaptation policies sat-

isfy the stream and capacity constraints.

e stream constraint: each stream’s allocation s3, (x) €
Ag; for eachi=1,...,n(x).

e capacity constraint: the aggregate allocation obeys
the link capacity constraint: Zfz(’l‘) sy, (x) <e.

Note that % is the aggregate mazrimum load, i.e., the max-
imum bandwidth that can be used by the active streams
given their respective maximum bandwidth requirements.

DEFINITION 2. Work-conserving Work-conserving adap-

tation policies satisfy:

%t)m: = Y sp(x(t) =c

y(®)

<c = sT(x() = %z =1,...,n(x).

The first equation simply requires that we utilize all avail-
able capacity when the maximum load exceeds the link ca-
pacity, and the second equation requires each stream receive
its maximum possible rate when the maximum load is under
the link capacity.

2.3.1 Fair share adaptation policy

We consider the fair share adaptation policy (denoted
my € II) under three different link scenarios. Let ¢ denote
the link capacity.

e Scenario 1: no min/max rates. Arriving streams
have no minimum or maximum bandwidth require-
ments, i.e., the minimum rate is 0, the maximum rate
is (the link capacity) ¢, the set of available encoding
rates is A = (0, ¢]. The fair share allocation when there
are n active streams is s"/(n) = £ forn =1,2,....

e Scenario 2: homogeneous min/max rates. Ar-
riving streams have common minimum and maximum
bandwidth requirements, i.e., the minimum rate is o,
the maximum rate is < < c, the set of available encod-
ing rates is A = [0, Z]. The fair share allocation when
there are n active streams is s™/ (n) = min{ <, 2} for
n=1,...,7,and 2 = | £].

e Scenario 3: heterogeneous min/max rates. Ar-
riving streams have varying minimum and maximum
bandwidth requirements, i.e., the minimum rate is x
(or X ~ Fx for a random stream), the maximum rate
is Z, the set of available encoding rates is A, = [z, Z].
The fair share allocation for a stream with minimum
bandwidth requirement z when the aggregate mini-
mum load is < y < cis sa’ (y) = %min{%,l}. In

words, the fair share allocation is the maximum rate
x

Z when the aggregate maximum load is less than ca-
pacity, £ < ¢, and is proportional to the fraction of
the aggregate minimum load %c when the aggregate

maximum load exceeds capacity.

We emphasize that the fair-share allocation for a stream
(z,d) is independent of the stream duration d.

2.4 QoS metrics

Note that a stream with minimum bandwidth z with
duration d admitted to a link operating under an adapta-
tion policy 7 is assigned a (time-varying) subscription level
(s7(X(t)),0 <t < d) throughout its tenure in the system.

The question considered in this paper is the following:
what is the effect of the fair share adaptation policy on the
quality of service seen by the stream? Answering this ques-
tion requires a definition of quality of service for rate-adaptive
multimedia streams, which is a thorny issue, e.g., [1, 2, 5, 6,
11, 12, 17, 32, 34, 40].

We define two general QoS measures that we feel encom-
pass a wide range of QoS issues. These two measures are
the time-average utility of the instantaneous bandwidth al-
location and the time-average transition cost of change in
bandwidth allocation. The time average utility metric as-
sumes the existence of an instantaneous utility function g(s)
that maps assigned subscription levels s to a user satisfac-
tion level g(s). The metric captures the time-average instan-
taneous utility over the duration of the stream. The time
average transition cost assumes the existence of a transition
cost function h(s,s’) that captures the visual/aural disrup-
tion induced by shifting the stream resolution from s to s’.
The metric captures the time-average transition cost over
the duration of the stream. The formal definitions are be-
low.

DEFINITION 3. Consider a stream with minimum subscrip-
tion level © and duration d, and let g, : [z, 2] — RT be a
bounded continuous measurable function where gz(s) is the
utility of a bandwidth allocation s to a stream with available
rates Ay C [z, Z]. The time-average utility of the instanta-
neous bandwidth allocation for this stream under policy m is
the random variable

d
fa=3 [ elTx@)an 2

DEFINITION 4. Consider a stream with minimum subscrip-
tion level © and duration d, and let hy : Rt x Rt — R™ be
a bounded measurable function where hy(s,s’) is the transi-
tion cost associated with the change in bandwidth allocation
from s to s’ for a stream with minimum bandwidth require-
ment x. Since the bandwidth allocation is a function of the

link state, we may write hy (sg (X(t7)), st (X(t))) Assume
hz(s,8) = 0 and that hy(s,s') = ha(s',8) for all s,s’. The
time-average transition cost of change in bandwidth alloca-
tion for this stream under policy  is the random variable

d
R, = é/g e (3 (X)), 55(X(0) ) M(dt).— (3)

As stated in the introduction, formulating objective mea-
sures of QoS that match experimental subjective testing of
customer perceived quality is difficult, but it is reasonable



to suppose that these two metrics capture in broad strokes
the quality of a stream.

At various times we will consider a particular transition
cost function where the transition cost is the magnitude of
the change in allocation.

AssUMPTION 2. Transition cost assumption. Assume
the transition cost function obeys

ha (5(x), ST(x)) = |s5(x) — sT(X)], vx, X € X, (4)

We are interested in both stream-specific and stream-
average expectations of these QoS metrics. Stream average
quantities yield the QoS for a typical admitted stream. Let
a stream’s minimum rate, x, denote its “type.” Calculating
the admitted stream average QoS in terms of the expected
QoS for each stream type requires the distribution on ad-
mitted stream types. Let R, = {x € X : a(x) +z < ¢}
be the subset of link states where an arriving stream of size
z is admitted. Then, by PASTA (Poisson arrivals see time
averages), the link state at a typical arrival time is in its
steady state distribution, X ~ p, and as such the admis-

sion probability for a stream of type z is p(R.). Then the
distribution of admitted stream types is
. Jo  p(Ru)dFx(u)
X ~ Fg(z) = Pmin , x€S8. 5
)= PP () ©

The admitted stream average is now defined as expectation
with respect to the distribution F'y, and will be denoted by
E[]. We will seek expressions for the following four quanti-
ties.

Ed= [ ;r’d]: the expected value of U, 4 for a stream of type
(z,d) under policy 7 conditioned on that stream being ad-
mitted.

E9 [R] 4]: the expected value of Ry q for a stream of type
(z,d) under policy 7 conditioned on that stream being ad-
mitted.

E[U"] = Jsyr+ EW[US 4]dF % (2)dFp(d): the admitted stream

average value of U.

E[R™] = Jswnt E%[RE j]dFg (x)dFp(d): the admitted stream

average value of R.

3. ANALYTICAL RESULTS

3.1 General results

LEMMA 1. For all policies m € 11 the QoS metrics obey:

E¥[Ura] = E*[g.(s2(X))],
B[R] = BV[[ QX dohe(s1(X),52()].
BU™] = /S E% g, (57 (X))|dFy (2),

BT = [ [ QEX.dx)ha(57(X), 570 aFx ().

See the appendiz for proof.

(8)
(9)

The lemma allows us to calculate values for U and R under
various policies m € II provided we specify the distribution
on the state p.

In the following subsections we develop expressions for
stream-specific and stream-average QoS metrics under the
fair share adaptation policy for each of the three scenarios
described in Subsection 2.3.1.

3.2 Scenario 1: Unconstrained rates

In this scenario we suppose the arriving streams have no
minimum or maximum rates. This means i) there is no
admission control, i) the queue dynamics are those of the
M/GI /o queue with offered load p, iii) the relevant state
information is just the number of active streams N(t). The
steady-state distribution p is Poisson with parameter p, i.e.,

T
n):(fpp—7 n=20,1,2,...,

p(n) = B(N = a

(10)
and the conditional distribution q is the steady state dis-
tribution of N(t) conditioned on at least one stream being
present in the system, i.e.,

p(n)

q(n) = ,n=1,23,... (11)

COROLLARY 1. Under the fair share adaptation policy,
and assuming arriving streams have no minimum or maxi-
mum rates, the QoS metrics obey

E4UT] = E4fg()), (12)
] - eyt 09

See the appendix for proof.

The expressions for stream average QoS in the lemma ad-
mit an intuitive interpretation. The time-average utility of
the instantaneous bandwidth allocation is simply the utility
of the expected bandwidth per stream when the number of
streams is taken according to its steady-state distribution,
conditioned on the system being non-empty.

The time-average transition cost of change in bandwidth
allocation is simply twice the rate of stream arrivals times
the expected transition cost of an arrival when the number
of streams is taken according to its steady-state distribution,
conditioned on the system being non-empty. The factor 2
comes from the fact that departures also cause fluctuations,
and the rate of departures is also A.

3.3 Scenario 2: Homogeneous min/max rates

As with the first scenario, all streams again have the same
relevant characteristics, i.e., S = {o} (durations may still
vary across streams, but this doesn’t affect the QoS under
the fair-share policy). The relevant link state information
is again the number of active streams, N(t). In contrast
to the first model, the inclusion of minimum subscription
levels x puts an upper bound 7 = | £] on the number of
streams that may simultaneously share the link. Similarly,
define n = |%°] as the maximum number of streams that
may simultaneously share the link and each receive their
maximum subscription level 2.

The link state space is X = {0,...,7}. The system dy-
namics are those of the M/GI/fi/f queue and the steady-
state distribution p is a truncated Poisson with parameter



p, ie.,

W7n:0,...7'ﬁ. (14)
i=0 4!

Define the conditioned distribution q as the steady state
distribution of N(¢) conditioned on at least one stream being
present in the system, i.e.,

q(n):]ID(N:n|]\7>O):j7 n=1,...,n. (15)

Finally, let b = E(p,n) denote the blocking probability,
where E(p,7) is the Erlang-b formula.

COROLLARY 2. Under the fair share adaptation policy,
and assuming arriving streams have homogeneous minimum

and mazimum bandwidth requirements o and 2, the QoS
metrics obey
™ . c O
E[U™] = Eq[g(mm{N,a})], (16)
aR™F] = g _¢
EURV] = 2amh(T, )+
-1
c c
zxnzzwlq(n)h(g,wl) (17)

See the appendix for proof.

3.4 Scenario 3: Heterogeneous min/max rates

As opposed to the first two models, now streams have
heterogeneous minimum subscription levels z; € S§. For this
scenario we make use of the transition cost Assumption 2.
Recall that {Y(¢)} is the aggregate minimum load process,

where Y (¢) = a(X(¢)). The steady state aggregate minimum
load is Y = a(X). The distribution of Y is given by [33]
(Eqn. 2.22):

oo l
1+375 %Ul(y)

Fy(y) =P(Y <y) = ,0<y<ec (18)
1+ 372, frou(c)
where p = % and
l
o) = [ Mar b < [Jdrcz. (9)
Sl

=1

Note that the blocking probability for an arriving stream
with minimum bandwidth requirement x is denoted b(z) =
1 — Fy(c—x). Define Fy |, (y) for 0 <y < c as the distribu-
tion of Y conditioned on x € X. It is straightforward to see
that

Fy(y) — Fy (=)

<y<e
1—Fom) @ "=Y=°

Fy,(y) = (20)

COROLLARY 3. Under the fair share adaptation policy and
the transition cost assumption, and assuming arriving streams
have heterogeneous minimum rates X ~ Fx and mazimum

rates %, the QoS metrics obey

B - ()]
E%[R}] = ZAIEF‘C’\@”[/OC]I(Y—HE'SC)X
he (255 A1) 2 (550 A1) JdFx ()],
B = [ (2<7A1>>]de<w>v
B[R] = / Fm[ I(Y + 2 <c)x
( ( ), ( 1))]dFX(a:')dF)—(

See the appendix for proof.

The expected time-average utility of the instantaneous
bandwidth allocation for a stream of type x is the expected
value over all link load levels (conditioned on x) of the in-
stantaneous utility of the fair share allocation corresponding
to each load level. The expected time average transition cost
for a stream of type x is the product of the average rate of
changes (2)) times the average transition cost. The average
transition cost is the expected value over all link load lev-
els (conditioned on z) of the instantaneous transition cost
associated with the change in fair share allocation corre-
sponding to a stream x and a link load Y seeing all possible
link load changes z’. The admitted stream average quanti-
ties are obtained from the corresponding expected QoS for
each stream type x by taking an expectation with respect
to the admitted type distribution Fg.

4. ASYMPTOTICS AND SCALINGS

The results in the previous section apply for finite capacity
links and are given in terms of expectations due to the inher-
ent dependence of the performance metrics on the stochastic
system state. For large capacity links multiplexing a large
number of streams this system state undergoes a law of large
numbers effect and many functions of the state converge to
constants yielding simplified expressions for asymptotic per-
formance. The many small users regime is obtained by let-
ting the link capacity ¢ and the stream arrival rate A both
go linearly to infinity. More formally, we introduce a linear
capacity scaling consisting of a sequence of links, indexed by
m =1,2,..., where the m'" link has arrival rate A(m) = mX
and link capacity ¢(m) = ()\(m)i) (vZ) for some v > 0.
Define p(m) = )\(m)%. We identify three distinct scaling
regimes, parameterized by 7.

e Quverloaded Regime: v < «. Here, the bandwidth di-
vided by the average number of active streams is less
than that required to support streams at their aver-
age minimum subscription level, ie., vZ < o. The
asymptotic average blocking probability in this regime
is 1 — 2. We call this the overloaded regime.

e Rate Adaptive Regime: o < v < 1. Here, the band-
width divided by the average number of active streams
lies between the average minimum subscription level
and the average maximum subscription level, i.e., 0 <
vZ < 2. The asymptotic average blocking probability

().



in this regime is 0. We call this the rate adaptive scal-
ing regime; this will be the regime of primary interest
in the sequel.

e Underloaded Regime: ~v > 1. Here the bandwidth di-
vided by the average number of active streams strictly
exceeds the average maximum subscription level, i.e.,
vZ > 2. The asymptotic average blocking probabil-
ity in this regime is 0. We call this the underloaded
regime.

Let U™, R;"™ be the values of U, R for a stream with
minimum bandwidth requirement  in the m*”* system under
policy w. We define the asymptotic QoS under policy 7 for
a stream with minimum bandwidth requirement = and with
scaling parameter v as

ul™ = lim U™ = lim gz(S;n’ﬂ(X(m)))v
ry™ = lim RJ"" = lim Q(X(m), dx)hg"™ (X (m), x).

m— oo m—oo [y
@

We break our notational convention and let u}™, %" de-
note random variables, where u}™ is the asymptotic utility
for a random stream X drawn from Fx, and similarly for
r¥". We define the stream average asymptotic QoS under
policy m and with scaling parameter v as

uT = E7 [u}”] :/u;’"dF;-;(a:),
s

o B[] = / Wy dFY (),
S

ﬂ
I

where

Y 7 (m)
FX(I) = mh_{nooFg (z)
is the asymptotic distribution on admitted stream minimum
rates.

LEMMA 2. Under the fair share adaptation policy and the
transition cost assumption, and assuming arriving streams
have heterogeneous minimum rates X ~ Fx and mazimum

rates %, the asymptotic QoS metrics obey
. T
ur™ = gx(((WVa) /\1);) (25)
r7T = QE;W, a<y<l (26)
«a

See the appendix for proof.

5. NUMERICAL AND SIMULATION RESULTS

All numerical results are computed using Mathematica.
We have also written a simulator in Perl. All simulation
results are given with 90% confidence intervals, although
in some cases the intervals too small to be perceptible. In
all cases our simulation results show very strong agreement
with the numerical results.

5.1 Utility and transition costs for a given stream

Consider a link of capacity ¢ with arrival rate A, mean
stream duration E[D] = 1 offered load p = 2, and adaptiv-
ity a. Suppose in particular that the distribution on mini-
mum rate requests of arriving streams is uniform over [0, ¢],

i.e., Fx = Uni(0,¢). From Corollary 3, all we need to calcu-
late is the distribution for the aggregate minimum load Y,
i.e., Fy. As shown in [33], p. 65,

ey Do(2y/2y)
Fy(y)—m7 0<y<g (27)

where I,(z) denotes a modified Bessel function of the first
kind of order n. As shown in [13] p. 206, we can express
such functions in terms of hypergeometric series:

P )=t U e

where

F( n,11 ’z) zi%%ﬁ (29)

It is straightforward to show that

d 1 1 1

=G B) =2 G o) (30)
Using these identities, we can write the CDF and PDF for
Y as

(1 e
Fi(y) = (Ll“y),os@/s@ (1)
F( 11 Je)
%7 y=0
F( 1,11 ‘”)
Vi) = pF( 2711 gy) (32)

TN O<y<e
F( 1,1 ‘p)
It is then straightforward to compute the CDF for Y condi-
tioned on Y > zx is:
! + (1 — ;) X

F( 1,11 )p) F( 1,11 )”)
F( 1711 gy) _F( 1,11 gx)

F( 1,11 ”’)_F< 1,11 §w> |

The PDF for Y conditioned on Y > z is:

1
F( 1,11 ”)
fre) = EF( 2,11 v) o 1,11 ) |
F( 1,11 ”) F( 1,11 ’J)*F( 1,11 5z)
(34)

where the top expression holds for y = z and the bottom
expression holds for z < y < c.

Figure 1 shows numerical plots of the expected utility un-
der the fair-share policy E*Ve [Us?] (21) versus the condi-

tioned minimum stream rate z for varying loads p = 0.1, 1, 10, 100

on a link of capacity ¢ = 100. The streams have an adap-
tivity o = 1 and a linear utility function g.(s) = s, hence
the utility of a rate allocation is the allocation itself. The



lines  and % = 2z represent the minimum and maximum
rate allocations. As expected the average rate is decreasing
in p and increasing in z. At x = ac = 50 the allocation for
small p (here, p = 0.1) changes slope since the allocation for
x < 50 is roughly Z = 2z, while for > 50 the allocation is
roughly ¢ = 100 due to the capacity constraint kicking in.
For heavy loads (here, p = 100) the allocation is roughly x
for all x.

Figure 2 shows numerical plots of the expected transition
cost B9 [R;’] (22) versus the conditioned stream rate z for
p = 0.1,1,10,100, and the same parameters as in Figure
1. The transition cost function h is taken as the magnitude
of the allocation change (4). We see that the 2\ coeffi-
cient dominates the transition cost for x small, but as the
conditioned stream rate approaches the link capacity * — ¢,
high blocking sets in, fewer streams are admitted, and hence
the rate of allocation changes goes to zero. The transition
penalty for p = 10 and p = 100 are fairly close. This is due
to the fact that the system is overloaded for both these of-
fered loads, and increasing p from 10 to 100 has little effect
on the admitted streams.

All simulation results for Figures 1 and 2 are computed by
generating 1,000, 000 streams and storing for each admitted
stream the triple (z,u,r), denoting the minimum rate, the
utility, and the transition cost. The (x,u) and (z,r) pairs
are then binned into a histogram with 100 bins each of size
1 from z = 0 to x = ¢ = 100. 90% Confidence intervals for
each bin value are obtained from the v and r values in each
bin. This procedure is then repeated for each value of p.

5.2 Utility and transition costs for a typical
stream

Figure 3 shows numerical plots of the expected utility
E9[U™/] (16) under a logarithmic utility function g(s) =
log s versus the scaling parameter v for m = 20,40, 60. Re-
call m is the arrival rate and link capacity scaling index.
Also shown is the corresponding asymptotic utility «”"f
(25). The figure illustrates the convergence to the asymp-
totic utility under the linear scaling. The jagged behavior
for small m and small 7 comes from the fact that small
increases in v increase the average utility, but once the ex-
tra capacity is sufficient to allow admission of an additional
stream then the average allocation decreases. The utility
is decreasing in m for v small because the time between a
departure and the subsequent next admission is decreasing
in m; the active streams receive a higher allocation during
these intervals, which vanishes as m gets large.

Figure 4 shows numerical plots of the expected transition
cost E[R™f] (17) under a transition cost h(s,s’) = |s — &
versus the scaling parameter vy for m = 20,40, 60, 80, 100.
Also shown is the corresponding asymptotic transition cost
r?77™f (26). The figure illustrates the slower convergence (rel-
ative to Figure 3) to the asymptotic transition cost under
the linear scaling.

All simulation results for Figures 3 and 4 are found by
running 2000 streams at each - level between v = 0 and
~v = 1.2 in steps of 0.005 for a link scaling of m = 40. 95%
confidence intervals are obtained from the 2000 or so u and
r values for each stream at each value of ~.

6. CONCLUSION

Fair share is a reasonable policy for bandwidth allocation
among competing rate adaptive streams. However, the anal-

ysis here identifies several drawbacks to fair share adapta-
tion. First, it is evident that the transition costs associated
with fair share can be prohibitively high. In practice the au-
ral and visual disruption caused by such frequent changes in
the encoding rate would not justify the benefit obtained by
having an occasionally higher rate. Second, it is in practice
not feasible to adjust the encoding rates as a continuous pa-
rameter. This is due to the fact that large media servers will
not likely possess the computational power to dynamically
adjust the encoding rate of each active stream. Instead it
is more reasonable to suppose that each media object will
be available at several discrete encoding levels. Finally, the
fair share policy is not optimal. As discussed in [46], the op-
timal allocation policy that maximizes the stream-average
normalized received rate is a volume-discrimination policy,
meaning that small volume streams receive superior service
at the expense of large volume streams. Stream volume
here denotes the maximum size in bytes of the stream, and
is computed as the product of the bit rate at the maximum
encoding level times the stream duration.

In this paper we investigate a model for a bottleneck link
subject to a dynamic load of rate adaptive flows. We de-
velop closed-form expressions for QoS metrics seen by such
flows under the fair share adaptation policy, for finite ca-
pacity links and asymptotic results for large capacity sys-
tems. The results permit one to evaluate the sensitivity of
flow-level QoS for wired/wireless systems given the flows’
characteristics and system load. This enables a rough cost
benefit analysis for designing such systems, e.g., deciding
the range of encodings worth supporting for an expected of-
fered load. A key contribution of this paper is the focus on
flow-level QoS in a dynamic system and specifically, evalu-
ating the dependence on a flow’s particular characteristics
in a heterogeneous system.

Several important extensions of these results are possible.
The most notable extension is to develop corresponding re-
sults under other adaptation policies besides fair share. This
is the focus of ongoing work. Also we expect that the re-
sults above hold for general stream duration distributions,
i.e., not just the exponential distribution.
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APPENDIX

Proof of Lemma 1. Consider (6). In steady state:

B [UZ4] = E% [ / 92 (sT(X(1)))dt] = E% [g.(s7(X))].

(35)
Consider next (7). We restate Lévy’s formula for stationary
Markov processes, i.e., ([36], p. 103),

B[y [ nexe). x@mn] 5[ [ ox.dynx.y)].

b—a (a,b]

(36)
where M(-) is the counting measure induced by the link state
changes in {X(t)}. The equation follows. The remaining
two equations follow from the first two by noting the expected
QoS for each stream type x is independent of the stream
duration d. B

Proof of Corollary 1. Streams vary only by their du-
ration in this model, and the fair share allocation is inde-
pendent of stream duration, so the expected QoS is constant
for all streams. Applying Lemma 1 yields immediately that
E[U™] = EP[g(£) | N > 0.

Consider next EA[R™7]. Lemma 1 yields:

B[R] = ]Eq[z Q(N,n')h(s"f(N),s"f(n'))}
n/#N
= St Y Qs (n), 5 ().
n=1 n’'=1,n'#n

For the M/G /oo queue the transition rates satisfy

Q(n,n") = A(n' =n+1) +nul(n’ =n—1). (37)

Substituting Q(n,n’) yields:

EIR™] = Y Aq(n)h(s™ (n),s™ (n+ 1)) +

[e o]

nug(n)h(s™ (n), s™ (n — 1))

- 2)\Zq(n)h(%, n—(&:-l)

where in the second equality we invoke detailed balance and
the fact that h(s,s’) = h(s',s). &

Proof of Corollary 2. Streams vary only by their du-
ration in this model, and the fair share allocation is inde-
pendent of stream duration, so the expected QoS is constant
for all streams. Applying Lemma 1 yields immediately that
E[U™/] = EP[g(min{ %, 2}) | N > 0].

Consider next E4 [R“f]. Lemma 1 yields:

EY[R™/] Eq[ Z Q(N,n")h(s"F (N),s™ (n'))]
n/#N
= Y am) > Qn)h(s™ (n),s™ (n)).
n=1 n/=1,n'#n

For the M/G/n/7 queue the transition rates satisfy
Qn,n+1) =A
Qn,n—1) =nu, n=1,...,7

Q(n,n') =0, else

n=0,...,n—1

Applying these transition rates yields:

1

EY[R™] =

(]

q(n))\h(s”f (n),s™ (n+ 1)) +

1

3
Il

NE

q(n)npah (s (n), s™ (n + 1))

2

3
Il

A q(n)h(s™ (n),s™ (n+ 1)),

1

I
v

n

where the second equality follows from detailed balance equa-
tions. Note the lower limit of summation is n = 1 (because
one stream is assumed present), and the upper limit is 7 — 1
(because arrivals are blocked in state n). The fair share al-
location is

g @) 1§”Sﬁ
sf(n)z{% n<n (38)

The transition cost is 0 when n < n since all streams receive
their mazimum rate:

0, 1<n<n
h(s™ (n),s™ (n+1)) = ¢ MZ 557), n=n . (39)
h(s,755), n<n<n

Substituting the transition costs yields the desired expres-
sion. B



Proof of Corollary 3. Consider first E4= [U;rf]. Applying
Lemma 1:

E% (U] =B [0. (2 (5 A D). (40)

Consider next E9® [R ] By the transition cost assump-
tion,

ha (s2” (x), 52" (xU{y})) = S;rf (x) = sz’ (x U {y}), ¥y >0
ho (s’ (%), 827 (x \ {xi})) = sz’ (x\ {z:}) — 52 (%),
for each i =1,...,n(x).

Let x = (x1,...,2n) denote a generic link state. The
transition rates satisfy
Qx,xU{z}) = MFx(@)I(z1+zn+2<¢), >0
Qx,x\ {z;}) = 1, i=1,...,n

Q(x,x') = 0, else

Applying the transition cost function and transition rates
to the equation in Lemma 1, we obtain

E9= [R;ff] = E%@ [/\ /OC I(a(X) +2' <c) x

(527 (X) — sz’ (XU {2}))dFx (') +

p Y (5 (X (X)) - 2 (%)
It follows from [33] p.62 that
R [A /CH(U(X) +1' <o) x

(s2? (X) — 537 (X U {:c'}))dFX(x')]

= Eq”[uZ(

i=1

(X\ {X3}) — s ()]

The equation follows. The expressions for E[U™] and E[R™]
follow from simple conditioning arguments. B

Proof of Lemma 2. The proof will make use of the fol-
lowing standard facts on the convergence of random wvari-

Let X, 5 X denotes convergence in distribution

and X, £ X denotes convergence in probability. These
two modes of convergence are equivalent for convergence to
a constant.

ables.

e Fact 1. If X, L X and f is continuous then f(X5) KA

F(X) ([14] p-283);

e Fact 2. X,, 2 X is equivalent to Elg(X»)] — E[g(X)]
for all bounded continuous functions g ([14] p.283);

e Fact 3. X,, — X (in any mode) and c, — c then
cnXn — ¢X (in that mode) ([14] p. 285);

e Fact 4. (Slutsky) If X, B X and Yo 5 ¢ then
f(Xn,Yn) KA f(X,¢) for all continuous functions f.

We first show

_ Ym) »n 1, (41)

oo(m) (1 — b))

where b(m) = E°[b™(X)] is the expected blocking probability
_

on link m. As before, one can show that limpy,— o b(m) = x

Consider V™7 .

W(m) =

for v < a and 0 otherwise. By Chebychev’s inequality, for
all e > 0:

Var(Y(m)) '
(Gp(m)(l - b(m))e)

) = SN X, The distribution on N is

P(|W(m) —1| >€) <

(42)

Recall that Y (m
given by ([33], p. 61)

P(N=n)= — o _oq . 3

oo ! ’
L+ 23202 rou(e)

and oi(c) is given by (19). Moreover, because of the capacity
constraint, the admitted X;’s comprising the load are not
independent and are mot drawn from Fx due to selective
blocking. Thus the variance of Y (m) is difficult to compute
directly and must be bounded.

Define Y (m) as Y (m) = ZN(’")X N(m) ~
and the XI are iid with X ~ Fx and are mdppendent of

Poisson(p(m))

N(m). Note that Y (m) has the distribution of Y (m) condi-
tioned on Y (m) < ¢(m), i.e.,
P(Y(m) <y) =B(Y(m) < y[V(m) < c(m)), (44)

for 0 <y < c(m). We now demonstrate that

Var(Y(m)) < % (45)
Defining Z(m) = I(Y (m) < ¢(m)) we bound the variance of

Y (m) by conditioning on Z(m):

Var(f/(m))

I
-
<
Q

5

2

v
!
<
8
3

I
<
8
=
<

v
<
I
=
:S>

A

= Var(Y(m))P(Y(m) < ¢(m)).
This gives an upper bound on the variance of Y (m):

_Var(V(m) (46)
P(Y(m) < ¢(m))

) is easily found to be

Var(Y(m)) <

The variance of Y (m
Var(Y(m)) = E[N(m)]Var(X) + E[X]z‘/ar(]\?(m))

p(m)E[X?]. (47)

Suppose v > «, then Markov’s inequality yields:

P(Y (m) < ¢(m))

A\

= q__opm) _,_ «a
= e T Ty (48)

Substituting (47) and (48) into (46) yields:

Var(Y(m)) < M

—_ &«
o

(49)



Substitution of (49) into (42):
p(WlL)JE([lel
P(|W(m)—1] >¢) < — 5
(op(m)(l - b(m))e)
~ IE[X2] 1
v — aE[X]2 p(m)(1 = b(m))?€>

For v < a the Markov inequality bound is trivial; in this
case an application of the Chebychev bound suffices:

- Var(Y (m))
P(Y(m) <c(m)) >1-— - . 50
()= cm)) = (c(m) = E[Y (m)])? (%0

Applying B[V (m)] = op(m), Var(¥ (m)) = p(m)E[X?], and
c(m) = op(m)y/a, substituting into (46) and then into (42)
yields an expression that goes to 0 in m.

The fair share allocation for a stream with minimum band-
width requirement x on link m is

zem) = 5 (S ) = & (g ) @

which is easily shown to converge to ( YV a) 1) .
Consider next v7°"f . Define the sequence Zz(m)

2A(m) /0 T LY (m) + 2 < e(m)) x

e (£ (S, (O ) g (a)

Y (m) a‘Y(m)+x
- %A(m)[/o (%71 x

c(m)ax ,
Y (m) (Y (m + a') dFx (@ )]
PR A gl _
B 204“[0 o )(W( )(1 = b(m)) + U;(;n) Y
z’ A(2 —
H(Wl_g‘(’;;"; < W(m) < Lo —_zetm) f‘” ]de

dFX (:El)

=)
/00 Ve H(l b(m) < W(m 7172{’7(:;))
O W (m) (1 — b(m)) (W(m>(1 —b(m)) + 5

Taking limits for W (m), b(m), p(m) we see the indicator func-
tion for the first term is never satisfied, while the indicator
function for the second term holds for a < v < 1. The limit

for v in this range is easily seen to be Zz(m) KA 2% uy. A



Ea- [ U;[f]
100

[ee]
o

Expected utility
[e)}
o

Figure 1: Expected utility (rate allocation) E9[U;/] for a stream with minimum rate = versus z for varying
offered loads p = {0.1,1,10,100} on a link of capacity ¢ = 100. The minimum and maximum allocations are
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shown as the lines y = x and y = = = 2z respectively. The right hand plot shows simulation results.
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Figure 2: Expected transition costs E9=[R;’] for a stream with minimum rate z for versus z for varying offered
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loads p = {0.1,1,10,100} on a link of capacity ¢ = 100. The right hand plot shows simulation results.



E[U™] yt*

0.7

o o o
. . .

(=]
.

Expected utility

o [=]
. .

0.

4

ul™f

0.6

Capacity scaling parameter

0.8

1

Expected utility

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Expected utility versus Capacity scaling parameter

P
Pk -
o2,
E i
*
7
$v
# .
%é
| ]
. L 7
&*ﬁ% p
r‘ I I I m\= 40—
0.2 0.4 0.6 0.8 1 1.2

Capacity scaling parameter (gamma)

Figure 3: The expected utility for a typical admitted stream E9[U”/] versus the scaling parameter v for
m = {20,40,60}. Also shown is the asymptotic utility u”™/. The right hand plot shows simulation results for

m = 40.
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Figure 4: The expected transition cost for a typical admitted stream E9[R™/] versus the scaling parameter v
for m = {20, 40,60,80,100}. Also shown is the asymptotic utility »”'™/. The right hand plot shows simulation

results for m = 40.



